2. Suku ke-n barisan geometri
Suku ke-n masih bisa kamu tentukan selama nilai n belum terlalu besar. Namun, jika nilai n cukup besar, cara seperti itu sulit untuk dilakukan. Untuk memudahkan kamu dalam menghitung suku ke-n barisan geometri, gunakan persamaan berikut.
Akibat dari rumus suku ke-n tersebut, dapat diperoleh
Jika banyak suku (n) ganjil, suku tengah (Ut) barisan geometri dapat dirumuskan sebagai berikut.
Sementara itu, jika di antara dua buah suku U1,U2,U3,…,Un disisipkan k buah bilangan sehingga terbentuk barisan geometri baru, rasio dan banyak suku dari barisan tersebut akan berubah sesuai rumusan berikut.
Keterangan:
r’= rasio barisan geometri baru;
r= rasio barisan geometri lama;
k= banyak suku yang disisipkan;
n’= banyak suku barisan geometri baru; dan
n= banyak suku barisan geometri lama.
Perlu diingat bahwa suku pertama barisan baru sama dengan suku pertama barisan lama.
Dengan a merupakan suku pertama atau U1. Untuk mengasah kemampuanmu, simak contoh soal berikut ini.
Contoh soal 4
Diketahui suku ke-2 dan ke-4 barisan geometri berturut-turut adalah 12 dan 27. Jika nilai r > 0, tentukan nilai dari suku ke-3!
Pembahasan:
Diketahui:
U2 = 12
U4 = 27
r > 0
Ditanya: U3 =…?
Pembahasan:
Nyatakan suku ke-2 dan ke-4 dalam notasi matematis.
Lakukan pembagian antara kedua suku seperti berikut.
Setelah rasio diketahui, tentukan suku ke-3nya.
Jadi, nilai dari suku ke-3 adalah 18.
Tidak ada komentar:
Posting Komentar