Minggu, 31 Januari 2021

Pengertian Integral

 Integral merupakan sebuah konsep penting dalam matematika yang seringkali menjadi kelemahan tidak sedikit orang. Agar dapat paham dengan integral sampai integral berkelanjutan, anda pertama harus paham integral dasarnya dulu. Pondasi dari semua integral lanjutan, misalnya saja agar dapat paham integral parsial, integral tentu, integral tak tentu, dll yang akan saya berikan penjelasannya di artikel berikutnya.

integralJika diberikan suatu fungsi f dari variabel x dengan interval [a,b] maka integral tertentunya dapat ditulis seperti gambar diatas. Sedangkan kurva untuk integral tersebut dapat digambarkan sebagai berikut.
integral2Kurva diatas dapat didefinisikan sebagai daerah yang dibatasi oleh kurva f, sumbu x, sumbu y, garis x=a dan garis x=b, dimana daerah diatas sumbu x bernilai positif dan daerah dibawah sumbu x bernilai negatif.
Integral juga biasa digunakan untuk merujuk anti turunan. Jika terdapat sebuah fungsi F yang mempunyai turunan f maka kasus seperti ini disebut integral tak tentu yang dapat dinotasikan sebagai berikut.
integral3Jika f adalah fungsi kontinu yang terdefinisi pada sebuah interval tertutup [a,b] dan jika anti turunan F dari f diketahui maka integral tertentu dari f pada interval yang telah diketahui dapat didefinisikan sebagai.
integral4

INTEGRAL

Integral adalah kebalikan dari proses diferensiasi. Integral ditemukan menyusul ditemukannya masalah dalam diferensiasi di mana matematikawan harus berpikir bagaimana menyelesaikan masalah yang berkebalikan dengan solusi diferensiasi.
Lambang integral adalah \int\,

Integral terbagi dua yaitu integral tak tentu dan integral tertentu. Bedanya adalah integral tertentu memiliki batas atas dan batas bawah. Integral tertentu biasanya dipakai untuk mencari volume benda putar dan luas.

Disini C adalah sembarang konstanta.

1.   Rumus umum
          INT1
2.  Fungsi Aljabar
        INT2
3.  Fungsi Eksponensial
       INT3

Tidak ada komentar:

Posting Komentar