Sebelum kita belajar ke materi inti yaitu cara mencari persamaan garis singgung kurva, kita harus tahu dulu mengenai gradien garis yang disimbolkan dengan m, dimana :
- gradian garis untuk persamaan y=mx+c adalah m
- gradien garis untuk persamaan ax+by=c, maka m=-a/b
- gradien garis jika diketahui dua titik, misal (x1,y1) dan (x2,y2) maka untuk mencari gradien garisnya m=(y2-y1)/(x2-x1)
Gradien dua garis lurus, berlaku ketentuan :
- jika saling sejajar maka m1=m2
- jika saling tegak lurus maka m1.m2=-1 atau m1=-1/(m2)
Persamaan Garis Singgung Kurva
Jika terdapat kurva y = f(x) disinggung oleh sebuah garis di titik (x1, y1) maka gradien garis singgung tersebut bisa dinyatakan dengan m = f'(x1). Sementara itu x1 dan y1 memiliki hubungan y1 = f(x1). Sehingga persamaan garis singgungnya bisa dinyatakan dengan y – y1 = m(x – x1).
Jadi intinya jika kita akan mencari persamaan garis singgung suatu kurva jika diketahui gradiennya m dan menyinggung di titik (x1,y1) maka kita gunakan persamaan
y-y1=m(x-x1)
Sedangkan jika diketahui 2 titik, misalnya (x1,y1) dan (x2,y2) maka untuk mencari persamaan garis singgung dari dua titik tersebut kita dapat gunakan persamaan
Contoh soal :
- Luas sebuah kotak tanpa tutup yang alasnya persegi adalah 432 cm2. Agar volume kotak tersebut mencapai maksimum, maka panjang rusuk persegi adalah … cm.A. 6B. 8C. 10D. 12E. 16PEMBAHASAN :misal kita anggap tinggi kotak adalah t dan panjang sisi alas adalah s.Luas kotak tanpa tutup = Luas alas (persegi) + (4 x luas sisi)432 = s2 + (4.s.t)432 = s2 + 4tsKarena yang diminta dalam soal adalah panjang sisi persegi, maka kita buat persamaan dalam variable s.432 – s2 = 4ts108/s – s/4 = tVolume = v(x) = s2t= s2(108/s – s/4)= 108s – s3/4Agar volume kotak maksimum maka :v'(x) = 0108 – 3s2/4 = 0108 = 3s2/4144 = s212 = sJAWABAN : D
2. Tentukan persamaan garis singgung pada kurva y = x³ – 3x di titik (2, 3) ?
Jawab :
f(x) = x³ – 3x
f ‘(x) = 3x² – 3
m = f ‘(2) = 12 – 3 = 9
f(x) = x³ – 3x
f ‘(x) = 3x² – 3
m = f ‘(2) = 12 – 3 = 9
Jadi, persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y – 3 = 9 (x – 2)
y – 3 = 9x – 18
y = 9x – 15
y – y1 = m(x – x1)
y – 3 = 9 (x – 2)
y – 3 = 9x – 18
y = 9x – 15
3. Tentukan persamaan garis singgung pada kurva y = x4 – 7x2 + 20 di titik yang berabsis 2 ?
Jawab :
x = 2
y = x4 – 7x2 + 20 = y = 24 – 7.22 + 20 = 16 – 28 + 20 = 8
m =y’ = 4x3 – 14 x = 4.23 – 14.2 = 32 – 28 = 4
x = 2
y = x4 – 7x2 + 20 = y = 24 – 7.22 + 20 = 16 – 28 + 20 = 8
m =y’ = 4x3 – 14 x = 4.23 – 14.2 = 32 – 28 = 4
Jadi, persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y – 8 = 4(x – 2)
y – 8 = 4x – 8
y = 4x
y – y1 = m(x – x1)
y – 8 = 4(x – 2)
y – 8 = 4x – 8
y = 4x
4. Tentukan persamaan garis singgung pada kurva y = x3 + 10 di titik yang berordinat 18 ?
Jawab :
Ordinat adalah nilai y, maka
y = 18
x3 + 10 = 18
x3 = 8
x = 2
Ordinat adalah nilai y, maka
y = 18
x3 + 10 = 18
x3 = 8
x = 2
m = y’ = 3x2 = 3.22 = 12
Sehingga persamaan garis singgungnya
y – y1 = m(x – x1)
y – 18 = 12(x – 2)
y – 8 = 12x – 24
y = 12x – 16
y – y1 = m(x – x1)
y – 18 = 12(x – 2)
y – 8 = 12x – 24
y = 12x – 16
5. Persamaan garis singgung pada kurva y = x4 – 5x2 + 10 di titik yang berordinat 6 adalah
Jawab :
ordinat = 6
x4 – 5x2 + 10 = 6
x4 – 5x2 + 4 = 0
(x2 – 1)(x2 – 4) = 0
(x + 1)(x – 1)(x + 2)(x – 2) = 0
x = -1 atau x = 1 atau x = -2 atu x = 2
ordinat = 6
x4 – 5x2 + 10 = 6
x4 – 5x2 + 4 = 0
(x2 – 1)(x2 – 4) = 0
(x + 1)(x – 1)(x + 2)(x – 2) = 0
x = -1 atau x = 1 atau x = -2 atu x = 2
untuk x = -1
m = 4x3 – 10x = -4 + 10 = 6
y – y1 = m(x – x1)
y – 6 = 6(x + 1)
y – 6 = 6x + 6
y = 6x + 12
m = 4x3 – 10x = -4 + 10 = 6
y – y1 = m(x – x1)
y – 6 = 6(x + 1)
y – 6 = 6x + 6
y = 6x + 12
Untuk x = 1
m = 4x3 – 10x = 4 – 10 = -6
y – y1 = m(x – x1)
y – 6 = -6(x – 1)
y – 6 = -6x + 6
y = -6x + 12
m = 4x3 – 10x = 4 – 10 = -6
y – y1 = m(x – x1)
y – 6 = -6(x – 1)
y – 6 = -6x + 6
y = -6x + 12
Untuk x = -2
m = 4x3 – 10x = 4(-2)3 – 10(-2) = 4(-8) + 20 = -32 + 20 = -12
y – y1 = m(x – x1)
y – 6 = -12(x + 2)
y – 6 = -12x – 24
y = -12x – 18
m = 4x3 – 10x = 4(-2)3 – 10(-2) = 4(-8) + 20 = -32 + 20 = -12
y – y1 = m(x – x1)
y – 6 = -12(x + 2)
y – 6 = -12x – 24
y = -12x – 18
Untuk x = 2
m = 4x3 – 10x = 4.23 – 10.2 = 4.8 – 20 = 32 – 20 = 12
y – y1 = m(x – x1)
y – 6 = 12(x – 2)
y – 6 = 12x – 24
y = 12x – 18
m = 4x3 – 10x = 4.23 – 10.2 = 4.8 – 20 = 32 – 20 = 12
y – y1 = m(x – x1)
y – 6 = 12(x – 2)
y – 6 = 12x – 24
y = 12x – 18
Jadi, ada 4 persamaan garis singung, yaitu y = 6x + 12, y = -6x = 12, y = -12x – 18 dan y = 12x – 18
6. Persamaan garis singgung pada kurva y = 3x4 – 20 yang sejajar dengan garis y = 12x + 8 adalah
Jawab :
y = 3x4 – 20
y’ = 12x3
Persamaan garis yang sejajar dengan garis singgung adalah
y = 12x + 8
maka gradien garis ini adalah m1 = 12
Karena sejajar maka gradiennya sama sehingga gradien garis singgung (m2) adalah
m2 = m1 = 12
gradien garis singgung ini sama dengan turunan kurva sehingga
y’ = 12
12x3 = 12
x3 = 1
x = 1
maka y = 3x4 – 20 = 3 – 20 = – 17
Persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y + 17 = 12(x – 1)
y + 17 = 12x – 12
y = 12x – 29
y = 3x4 – 20
y’ = 12x3
Persamaan garis yang sejajar dengan garis singgung adalah
y = 12x + 8
maka gradien garis ini adalah m1 = 12
Karena sejajar maka gradiennya sama sehingga gradien garis singgung (m2) adalah
m2 = m1 = 12
gradien garis singgung ini sama dengan turunan kurva sehingga
y’ = 12
12x3 = 12
x3 = 1
x = 1
maka y = 3x4 – 20 = 3 – 20 = – 17
Persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y + 17 = 12(x – 1)
y + 17 = 12x – 12
y = 12x – 29
7. Garis yang menyinggung kurva y = 12 – x4 dan tegak lurus dengan x – 32y = 48 mempunyai persamaan ….
Jawab :
y = 12 – x4
y’ = – 4x3
y = 12 – x4
y’ = – 4x3
Sedangkan
x – 32y = 48
32y = x – 48
x – 32y = 48
32y = x – 48
Garis ini memiliki gradien m1=1/32
Karena garis singgungnya tegak lurus dengan garis ini maka
Karena garis singgungnya tegak lurus dengan garis ini maka
m1.m2 = -1
(1/32)m2=-1
m2= -32
m2 ini adalah gradien garis singgung, sehingga sama dengan turunan
y’ = -32
– 4x3 = -32
x3 = 8
x = 2
y = 12 – x4 = 12-24 = -4
maka persamaan garis singgungnya
y – y1 = m(x – x1)
y + 4 = -32(x – 2)
y + 4 = -32x + 64
y = -32x + 60
(1/32)m2=-1
m2= -32
m2 ini adalah gradien garis singgung, sehingga sama dengan turunan
y’ = -32
– 4x3 = -32
x3 = 8
x = 2
y = 12 – x4 = 12-24 = -4
maka persamaan garis singgungnya
y – y1 = m(x – x1)
y + 4 = -32(x – 2)
y + 4 = -32x + 64
y = -32x + 60
Tidak ada komentar:
Posting Komentar