Minggu, 31 Januari 2021

Persamaan Garis Singgung Kurva



Sebelum kita belajar ke materi inti yaitu cara mencari persamaan garis singgung kurva, kita harus tahu dulu mengenai gradien garis yang disimbolkan dengan m, dimana :
  • gradian garis untuk persamaan y=mx+c adalah m
  • gradien garis untuk persamaan ax+by=c, maka m=-a/b
  • gradien garis jika diketahui dua titik, misal (x1,y1) dan (x2,y2) maka untuk mencari gradien garisnya                            m=(y2-y1)/(x2-x1)
Gradien dua garis lurus, berlaku ketentuan :
  • jika saling sejajar maka m1=m2
  • jika saling tegak lurus maka m1.m2=-1 atau m1=-1/(m2)

Persamaan Garis Singgung Kurva

Jika terdapat kurva y = f(x) disinggung oleh sebuah garis di titik (x1, y1) maka gradien garis singgung tersebut bisa dinyatakan dengan m = f'(x1). Sementara itu x1 dan y1 memiliki hubungan y1 = f(x1). Sehingga persamaan garis singgungnya bisa dinyatakan dengan y – y1 = m(x – x1).
Jadi intinya jika kita akan mencari persamaan garis singgung suatu kurva jika diketahui gradiennya m dan menyinggung di titik (x1,y1) maka kita gunakan persamaan
y-y1=m(x-x1)
Persamaan garis singgung
Sedangkan jika diketahui 2 titik, misalnya (x1,y1) dan (x2,y2) maka untuk mencari persamaan garis singgung dari dua titik tersebut kita dapat gunakan persamaan
Screenshot_9
Contoh soal :

  1. Luas sebuah kotak tanpa tutup yang alasnya persegi adalah 432 cm2. Agar volume kotak tersebut mencapai maksimum, maka panjang rusuk persegi adalah … cm.
    A. 6
    B. 8
    C. 10
    D. 12
    E. 16
    PEMBAHASAN :
    misal kita anggap tinggi kotak adalah t dan panjang sisi alas adalah s.
    Luas kotak tanpa tutup = Luas alas (persegi) + (4 x luas sisi)
    432 = s2 + (4.s.t)
    432 = s2 + 4ts
    Karena yang diminta dalam soal adalah panjang sisi persegi, maka kita buat persamaan dalam variable s.
    432 – s2 = 4ts
    108/s – s/4 = t
    Volume = v(x) = s2t
    = s2(108/s – s/4)
    = 108s – s3/4
    Agar volume kotak maksimum maka :
    v'(x) = 0
    108 – 3s2/4 = 0
    108 = 3s2/4
    144 = s2
    12 = s
    JAWABAN : D
2. Tentukan persamaan garis singgung pada kurva y = x³ – 3x di titik (2, 3) ?
Jawab :
f(x) = x³ – 3x
f ‘(x) = 3x² – 3
m = f ‘(2) = 12 – 3 = 9
Jadi, persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y – 3 = 9 (x – 2)
y – 3 = 9x – 18
y = 9x – 15
3. Tentukan persamaan garis singgung pada kurva y = x4 – 7x2 + 20  di titik yang berabsis 2 ?
Jawab :
x = 2
y = x4 – 7x2 + 20 = y = 24 – 7.22 + 20 = 16 – 28 + 20 = 8
m =y’ = 4x3 – 14 x = 4.23 – 14.2 = 32 – 28 = 4
Jadi, persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y – 8 = 4(x – 2)
y – 8 = 4x – 8
y = 4x
4. Tentukan persamaan garis singgung pada kurva y = x3 + 10 di titik yang berordinat 18 ?
Jawab :
Ordinat adalah nilai y, maka
y = 18
x3 + 10 = 18
x3 = 8
x = 2
m = y’ = 3x2 = 3.22 = 12
Sehingga persamaan garis singgungnya
y – y1 = m(x – x1)
y – 18 = 12(x – 2)
y – 8 = 12x – 24
y = 12x – 16
5. Persamaan garis singgung pada kurva y = x4 – 5x2 + 10 di titik yang berordinat 6 adalah
Jawab :
ordinat = 6
x4 – 5x2 + 10 = 6
x4 – 5x2 + 4 = 0
(x2 – 1)(x2 – 4) = 0
(x + 1)(x – 1)(x + 2)(x – 2) = 0
x = -1 atau x = 1 atau x = -2 atu x = 2
untuk x = -1
m = 4x3 – 10x = -4 + 10 = 6
y – y1 = m(x – x1)
y – 6 = 6(x + 1)
y – 6 = 6x + 6
y = 6x + 12
Untuk x = 1
m = 4x3 – 10x = 4 – 10 = -6
y – y1 = m(x – x1)
y –  6 = -6(x – 1)
y – 6 = -6x + 6
y = -6x + 12
Untuk x = -2
m = 4x3 – 10x = 4(-2)3 – 10(-2) = 4(-8) + 20 = -32 + 20 = -12
y – y1 = m(x – x1)
y – 6 = -12(x + 2)
y – 6 = -12x – 24
y = -12x – 18
Untuk x = 2
m = 4x3 – 10x = 4.23 – 10.2 = 4.8 – 20 = 32 – 20 = 12
y – y1 = m(x – x1)
y – 6 = 12(x – 2)
y – 6 = 12x – 24
y = 12x – 18
Jadi, ada 4 persamaan garis singung, yaitu y = 6x + 12, y = -6x = 12, y = -12x – 18 dan y = 12x – 18
6. Persamaan garis singgung pada kurva y = 3x4 – 20 yang sejajar dengan garis y = 12x + 8 adalah
Jawab :
y = 3x4 – 20
y’ = 12x3
Persamaan garis yang sejajar dengan garis singgung adalah
y = 12x + 8
maka gradien garis ini adalah m1 = 12
Karena sejajar maka gradiennya sama sehingga gradien garis singgung (m2) adalah
m2 = m1 = 12
gradien garis singgung ini sama dengan turunan kurva sehingga
y’ = 12
12x3 = 12
x3 = 1
x = 1
maka y = 3x4 – 20 = 3 – 20 = – 17
Persamaan garis singgungnya adalah
y – y1 = m(x – x1)
y + 17 = 12(x – 1)
y + 17 = 12x – 12
y = 12x – 29
7. Garis yang menyinggung kurva y = 12  – x4  dan tegak lurus dengan x – 32y = 48 mempunyai persamaan ….
Jawab :
y = 12  – x4
y’ = – 4x3
Sedangkan
x – 32y = 48
32y = x – 48
Screenshot_20
Garis ini memiliki gradien m1=1/32
Karena garis singgungnya tegak lurus dengan garis ini maka
m1.m2 = -1
(1/32)m2=-1
m2= -32
m2 ini adalah gradien garis singgung, sehingga sama dengan turunan
y’ = -32
– 4x3 = -32
x3 = 8
x = 2
y = 12  – x4 = 12-24 = -4
maka persamaan garis singgungnya
y – y1 = m(x – x1)
y + 4 = -32(x – 2)
y + 4 = -32x + 64
y = -32x + 60



 

Tidak ada komentar:

Posting Komentar