Sabtu, 30 Januari 2021

Kejadian Klasik dan Komplemen


Pengertian Peluang Klasik

Peluang klasik adalah peluang pertama yang dipelajari oleh para matematikawan di abad ke-17 dan 18. Semua kejadian yang akan terjadi ditentukan melalui ruang sampel. 

Pada peluang jenis ini, semua kejadian diasumsikan memiliki peluang yang sama untuk terjadi. Misalnya kamu mengambil satu kartu bridge, masing-masing kartu bridge yang kamu ambil memiliki peluang yang sama, yaitu 1⁄52. 

Untuk menentukan peluang kejadian A, kamu harus membandingkan antara banyaknya kejadian A dan banyaknya keluaran pada ruang sampel. Secara matematis, kejadian A ditulis sebagai berikut.

Perhatikan contoh soal berikut.

dari seperangkat kartu bridge, akan diambil kartu merah bernomor 10. Tentukan peluang terambilnya kartu merah bernomor 10!

Pembahasan:

Seperangkat kartu bridge terdiri dari 52 kartu. Artinya, banyaknya ruang sampel percobaan tersebut n(S) = 52. Terambilnya kartu merah bernomor 10 menunjukkan n(A) = 2.

Berdasarkan teori peluang klasik diperoleh:

Jadi, peluang terambilnya kartu warna merah nomor 10 adalah 1⁄26.

Kejadian-Kejadian Komplemen

Foto: pixabay.com

Konsep penting lainnya yang harus kamu pelajari di materi peluang ini adalah kejadian yang saling berkomplemen. Komplemen kejadian A adalah kejadian yang terjadi di ruang sampel selain A. Kejadian komplemen ini biasa dinyatakan dengan Ac. Secara matematis, dirumuskan sebagai berikut.

n(Ac) = n(S) – n(A)

Mengingat semua jumlah kejadian = 1, maka persamaan di atas menjadi seperti berikut.

P(A)  + P(Ac) =  1 atau P(Ac) = 1 – P(A)

Untuk lebih jelasnya, simak contoh soal berikut.

Jika peluang siswa SMA Taruna gagal dalam ujian adalah 0,0001, tentukan peluang siswa SMA Taruna berhasil dalam ujian!

Pembahasan:

Misalkan A adalah kejadian siswa SMA Taruna gagal dalam ujian. Dengan demikian, Ac adalah kejadian SMA Taruna berhasil dalam ujian. Berdasarkan persamaan komplemen kejadian, diperoleh:

P(Ac) = 1 – P(A)

          = 1 – 0,0001

          = 0,9999

Jadi, peluang siswa SMA Taruna berhasil dalam ujian adalah 0,9999.

Peluang Empirik

Foto: pixabay.com

Peluang empirik adalah peluang suatu kejadian yang diperoleh dari hasil observasi atau kejadian nyata. Secara matematis, peluang empirik dirumuskan sebagai berikut.

 

Perhatikan contoh soal berikut.

Suatu perusahaan ingin meneliti pilihan transportasi masyarakat dari Jakarta ke Bandung. Perusahaan tersebut memilih 100 responden dari beberapa kecamatan di Jakarta. Hasil dari penelitian tersebut ditunjukkan oleh tabel berikut.

Tentukan peluang masyarakat memilih mobil umum dari Jakarta ke Bandung!

Pembahasan:

Jika A adalah kejadian masyarakat memilih mobil umum, ini berati f(A) = 15. Dengan demikian, peluang kejadian A adalah sebagai berikut.

Jadi, peluang masyarakat memilih mobil umum dari Jakarta ke Bandung adalah 0,15 atau 15%.



Silakan simak Video Berikut :




Latihan Soal : 
  1. Sebuah dadu dilempar sekali, tentukan peluang munculnya mata dadu lebih dari dua.
  2. Pada pelemparan sebuah dadu, tentukan peluang munculnya sisi dadu yang berangka genap
  3. Ana bermain kartu bridge, kemudian diambil satu kartu secara acak. Tentukan peluang Ana mengambil kartu bukan As

 

Pengertian dan konsep peluang

 

Pengertian Peluang

Peluang adalah besarnya probabilitas atau kemungkinan berlangsungnya suatu kejadian. Konsep peluang ini tidak hanya diterapkan pada hal-hal yang bersifat sederhana seperti permainan dadu, melainkan pada hal yang lebih kompleks, seperti investasi, ramalan cuaca, asuransi, dan lainnya. Itulah mengapa, materi peluang perlu dikenalkan sejak di bangku sekolah.

Konsep Dasar Peluang

Konsep dasar peluang merupakan penjabaran lebih rinci tentang besaran-besaran apa yang harus kamu kuasai. Konsep ini diperoleh melalui percobaan. Adapun konsep dasar peluang meliputi ruang sampel dan titik sampel.

1. Ruang Sampel

Ruang sampel adalah himpunan semua kemungkinan hasil yang didapatkan dari suatu percobaan. Ruang sampel biasa dinyatakan sebagai S. Contohnya, ruang sampel dari dadu adalah angka 1, 2, 3, 4, 5, dan 6.

2. Titik Sampel

Titik sampel adalah bagian dari ruang sampel. Contohnya adalah saat kamu melemparkan satu buah dadu, salah satu kemungkinan angka yang akan keluar adalah 4.

Perhatikan contoh soal berikut.

Dari seperangkat kartu bridge, akan diambil satu kartu secara acak. Tentukan ruang sampel percobaan tersebut!

Pembahasan:

Dalam seperangkat kartu bridge, ada 4 jenis kartu, yaitu hati, sekop, wajik, dan keriting. Masing-masing kartu terdiri atas 13 kartu, yaitu As sampai King.

Dengan demikian, ruang sampelnya adalah 4 × 13 = 52 kartu.

Untuk Lebih memahami materi silakan simak video berikut :











Deret Geometri

 

Deret Geometri

Jumlah suku ke-n pertama dari suku-suku barisan geometri disebut sebagai deret geometri berhingga. Mengapa disebut berhingga? Karena memiliki suku akhir tertentu. Apakah mungkin ada deret geometri tak hingga? Mungkin saja sih. Pembahasan deret geometri tak hingga bisa kamu dapatkan di pembahasan Quipper Blog selanjutnya. Secara matematis, jumlah suku ke-n pertama barisan geometri dirumuskan sebagai berikut.

Agar belajarmu lebih afdal, simak contoh soal terkait deret geometri berikut.

Contoh soal 5

Pembahasan:

Diketahui:

Ditanya: r =…?

Pembahasan:

Pertama, Quipperian harus mencari suku pertama dan kedua barisan tersebut.

 

Selanjutnya, tentukan jumlah 2 suku pertama barisan geometri tersebut.

Tentukan suku ke-2nya.

 

Tentukan rasionya!

 

Jadi, rasio barisan geometri tersebut adalah 3.

Di awal pertemuan ini, Quipperian diajak untuk menghitung berapa keuntungan setelah berinvestasi selama 10 bulan? Penasaran? Check check this out!

Contoh soal 6

Kamu berinvestasi sebesar Rp10.000.000. Pada bulan pertama kamu investasi, keuntungan yang diperoleh adalah Rp2.000. Pada bulan kedua, keuntungannya menjadi Rp4.000 dan bulan ketiga menjadi Rp8.000. Kira-kira berapa keuntungan yang kamu dapatkan setelah 10 bulan berinvestasi? Dan berapa total uang yang bisa kamu kumpulkan setelah berinvestasi selama 10 bulan?

Pembahasan:

Pada kondisi tersebut, keuntungan setiap bulan merupakan kelipatan 2 dari bulan sebelumnya. Artinya, jika dibentuk barisan, keuntungan tersebut akan menjadi barisan geometri, yaitu Rp2.000, Rp4.000, Rp8.000, …,Un. Setelah 10 bulan, keuntungannya akan menjadi:

 

Jadi, keuntungan yang akan kamu dapatkan setelah berinvestasi selama 10 bulan adalah Rp2.046.000 dengan total uang mencapai Rp10.000.000 + Rp2.046.000 = Rp12.046.000.





Sisipan Bilangan barisan Geometri

 

4. Sisipan pada barisan geometri

Misalkan Quipperian menjumpai barisan geometri dengan rasio r. Lalu, barisan geometri tersebut disisipi k bilangan di setiap 2 bilangan yang berdekatan. Setelah disisipi k bilangan, terbentuk barisan geometri baru yang rasionya k’. Pertanyaanya adalah berapakah rasio barisan geometri yang baru? Untuk memudahkan Quipperian, gunakan persamaan berikut.



Suku Tengah Barisan Geometri

 

3. Suku tengah barisan geometri

Sama halnya barisan aritmetika. Pada barisan geometri yang banyak sukunya ganjil, suku tengahnya bisa diperoleh dengan persamaan berikut.

 



Suku ke-n Barisan Geometri

 

2. Suku ke-n barisan geometri

Suku ke-n masih bisa kamu tentukan selama nilai n belum terlalu besar. Namun, jika nilai n cukup besar, cara seperti itu sulit untuk dilakukan. Untuk memudahkan kamu dalam menghitung suku ke-n barisan geometri, gunakan persamaan berikut.

 

Akibat dari rumus suku ke-n tersebut, dapat diperoleh

rumus suku ke-n

Jika banyak suku (n) ganjil, suku tengah (Ut) barisan geometri dapat dirumuskan sebagai berikut.

banyak suku (n) ganjil, suku tengah (Ut)

Sementara itu, jika di antara dua buah suku U1,U2,U3,…,Un disisipkan k buah bilangan sehingga terbentuk barisan geometri baru, rasio dan banyak suku dari barisan tersebut akan berubah sesuai rumusan berikut.

rasio dan banyak suku dari barisan

Keterangan:
r’= rasio barisan geometri baru;
r= rasio barisan geometri lama;
k= banyak suku yang disisipkan;
n’= banyak suku barisan geometri baru; dan
n= banyak suku barisan geometri lama.

Perlu diingat bahwa suku pertama barisan baru sama dengan suku pertama barisan lama.

Dengan a merupakan suku pertama atau U1. Untuk mengasah kemampuanmu, simak contoh soal berikut ini.

Contoh soal 4

Diketahui suku ke-2 dan ke-4 barisan geometri berturut-turut adalah 12 dan 27. Jika nilai r > 0, tentukan nilai dari suku ke-3!

Pembahasan:

Diketahui:

U2 = 12

U4 = 27

r > 0

Ditanya: U3 =…?

Pembahasan:

Nyatakan suku ke-2 dan ke-4 dalam notasi matematis.

Lakukan pembagian antara kedua suku seperti berikut.

 

Setelah rasio diketahui, tentukan suku ke-3nya.

Jadi, nilai dari suku ke-3 adalah 18.




Barisan Geometri

 

Barisan Geometri

Apa sih barisan geometri itu? Lalu apa bedanya dengan barisan aritmetika? Barisan geometri merupakan barisan bilangan yang hasil bagi antara dua suku berurutannya selalu sama atau tetap. Perbandingan (hasil bagi) antara dua suku berurutan pada barisan geometri disebut dengan rasio yang dilambangkan dengan r.

1. Bentuk barisan geometri

Rumus untuk menentukan rasio pada barisan geometri adalah sebagai berikut.

Rumus untuk menentukan rasio pada barisan geometri

Keterangan:
r = rasio;
Un = suku ke-n;
Un-1= suku sebelum suku ke-n; dan
n = banyaknya suku.