Kamis, 22 Juli 2021

Dimensi Tiga

Dimensi Tiga

Dimensi Tiga I: Bangun Ruang Beraturan

1. Kubus

Kubus merupakan bangun ruang yang dibatasi oleh 6 bujur sangkar yang saling kongruen. Keenam bujur sangkar disebut sisi kubus dan garis yang menjadi perpotongan dua sisi kubus disebut rusuk kubus. Kubus memiliki 12 rusuk yang sama panjang.

bangun ruang kubus

  • Volume kubus: V =s^3
  • Luas permukaan: L = 6.s^2

2. Balok

Balok memiliki 6 sisi dimana masing-masing sisi yang berhadapan saling kongruen. Balok memiliki 12 rusuk dengan 3 kelompok panjang yang berbeda yaitu p, l, dan t seperti dibawah:

dimensi tiga balok

  • Volume: V = P \times l \times t
  • Luas permukaan: L = 2(p.l + p.t + l.t)

3. Prisma

Prisma adalah bangun ruang yang memiliki 2 bidang yang sejajar dan kongruen yang disebut penampang. Bidang yang menghubungkan kedua penampang disebut selimut prisma.

prisma segitiga, segiempat, dan segilima

  • Volume: V = luas alas \times tinggi
  • Luas permukaan: L = (2 \times luas alas) + keliling \times tinggi

4. Limas

Limas merupakan bangun ruang yang terdiri dari satu bidang alas dan selimut bangun yang berbentuk bidang-bidang segitiga. Satu titik dari masing-masing segitiga saling bertemu di sebuah titik disebut titik puncak limas.

volume dan luas permukaan dimensi tiga limas

  • Volume: V = \frac{1}{3}
  • Luas permukaan: L = luas alas + luas selimut

5. Silinder

Silinder merupakan bangun ruang yang memiliki 2 bidang penampang berbentuk lingkaran yang sejajar dan kongruen. Bidang selimut silinder merupakan bidang persegi panjang yang dilengkungkan secara mulus mengikuti keliling bidang lingkarannya.

bangun ruang silinder tabung

  • Volume: V = (\pi r^2) \times t
  • Luas permukaan: L = (2 \times luas alas) + luas selimut

6. Kerucut

Kerucut merupakan bidang ruang yang terdiri dari satu bidang alas lingkaran dan sebuah titik puncak dengan selimut bidang berbentuk juring lingkaran dan busurnya dilengkungkan semulus keliling lingkarannya.

volume dan luas permukaan kerucut

  • Volume: V = \frac{1}{3}(\pi r^2) \times t
  • Luas permukaan: L = luas alas + luas selimut

Luas permukaan: L = \pi r^2 + \pi rs = \pi r(r + s)

7. Bola

Bola merupakan bangun ruang yang tidak mempunyai bidang alas dan titik pojok. Bola merupakan himpunan titik dalam dimensi tiga yang memiliki jarak sama terhadap satu titik tertentu yang disebut pusat bola. Jarak pusat bola ke titik-titik permukaan lingkaran disebut jari-jari bola.

dimensi tiga bola

  • Volume: V = \frac{4}{3}(\pi r^3)
  • Luas permukaan: L = 4\pi r^2

Dimensi Tiga II: Kedudukan Titik, Garis, dan Bidang dalam Ruang

1. Kedudukan titik terhadap garis

Sebuah titik dapat terletak di sebuah garis atau di luar garis. Jika titik terdapat di sebuah garis maka jarak titiknya 0 dan jika titik terletak di luar garis jaraknya dihitung tegak lurus terhadap garis.

kedudukan titik terhadap garis

Contoh, pada gambar di atas diketahui sebuah titik B terhadap garis g. Titik B memiliki jarak terhadap garis g sejauh garis putus-putus (B ke B’) dimana B’ merupakan proyeksi tegak lurus titik B pada garis g.

2. Kedudukan titik terhadap bidang

Sebuah titik dapat terletak di sebuah bidang atau di luar bidang. Jika titik terdapat di sebuah bidang maka jarak titiknya 0 dan jika titik terletak di luar bidang jaraknya dihitung tegak lurus terhadap bidang.

dimensi tiga kedudukan titik terhadap bidang

Contoh, pada gambar di atas diketahui sebuah titik P terhadap bidang v. Titik P diluar bidang v sehingga memiliki jarak terhadap bidang v sejauh garis tegak (P ke P’) dimana P’ merupakan proyeksi tegak lurus titik p pada bidang v.

3. Kedudukan garis terhadap garis

Dua buah garis dapat dikatakan sebagai berikut :

  • Berpotongan, jika kedua garis bertemu di sebuah titik
  • Berhimpit, jika seluruh titik yang dilewati garis g juga dilewati garis h
  • Sejajar, jika kedua garis berada pada bidang yang sama dan tidak akan bertemu pada suatu titik
  • Bersilangan, jika masing-masing garis berada pada bidang yang saling bersilangan tegak lurus

kedudukan garis terhada garis

4. Kedudukan garis terhadap bidang

  • Terletak pada bidang, jika seluruh garis berada pada bidang sehingga seluruh titik pada garis saling berhimpit dengan titik-titik pada bidang. Tidak ada jarak antara garis dan bidang.
  • Sejajar bidang, jika seluruh titik pada garis memiliki jarak yang sama terhadap Misal jarak titik A di garis terhadap titik A’ di bidang adalah sama dengan jarak titik B di garis terhadap titik B’ di bidang.
  • Memotong bidang, jika garis dan bidang saling tegak lurus.

kedudukan garis terhadap bidang5. Kedudukan bidang terhadap bidang

  • Berhimpit, jika seluruh titik yang ada di bidang \alpha berada pada bidang \beta.
  • Sejajar, jika seluruh titik pada kedua bidang berada pada jarak yang sama.
  • Berpotongan, jika kedua bidang bertemu di sebuah garis.

kedudukan bidang terhadap bidang sejajar berimpit berpotongan

Contoh Soal Dimensi Tiga dan Pembahasan

Contoh Soal 1: Jarak Titik dengan Garis

Diketahui kubus ABCD.EFGH dengan panjang rusuk 4 cm. Tentukan jarak antara titik F dengan diagonal ruang BH.

Pembahasan

contoh soal dimensi tiga jarak titik terhadap garis

BF = 4

FH = \sqrt{EF^2 + EH^2} = \sqrt{4^2 + 4^2} = 4\sqrt{2}

BH = \sqrt{FH^2 + BF^2} = \sqrt{(4\sqrt{2})^2 + 4^2} = 4\sqrt{3}

Jarak titik F dengan garis BH sama dengan panjang garis PF. Jika luas segitiga BHF diketahui

Luas BHF = \frac{1}{2}PF \times BH atau Luas BHF = \frac{1}{2}BF \times FH, maka:

\frac{1}{2}PF \times BH = \frac{1}{2}BF \times FH

PF \times BH = BF \times FH

PF = \frac{BF \times FH}{BH}

PF = \frac{4 \times 4\sqrt{2}}{4\sqrt{3}}

PF = \frac{4}{3}\sqrt{6 cm}

Contoh Soal 2: Volume Bangun Ruang

Kubus ABCD.EFGH dengan panjang rusuk 6 cm. Titik P dan Q berturut-turut terletak pada pertengahan FG dan HG. Perpanjangan garis BP, DG dan CG berpotongan di titik T. Tentukan volume limas T.BCD.

Pembahasan

contoh soal volume bangun ruang

pembahasan soal

Untuk lebih jelas silakan simak video berikut ini :

 






Induksi Matematika

Induksi Matematika

Induksi matematika merupakan materi yang menjadi perluasan dari logika matematika. Logika matematika sendiri mempelajari pernyataan yang bisa bernilai benar atau salah, ekivalen atau ingkaran sebuah pernyataan, dan juga berisi penarikan kesimpulan.

Induksi matematika menjadi sebuah metode pembuktian secara deduktif yang digunakan untuk membuktikan suatu pernyataan benar atau salah. Dimana merupakan suatu proses atau aktivitas berpikir untuk menarik kesimpulan berdasarkan pada kebenaran pernyataan yang berlaku secara umum sehingga pada pernyataan khusus atau tertentu juga bisa berlaku benar. Dalam induksi matematika ini, variabel dari suatu perumusan dibuktikan sebagai anggota dari himpunan bilangan asli.


Pengertian Induksi Matematika

Induksi Matematika merupakan salah satu metode untuk membuktikan suatu pernyataan benar atau salah secara deduktif. Dimana merupakan suatu proses untuk menarik suatu kesimpulan berdasar pada kebenaran pernyataan yang berlaku secara umum sehingga untuk pernyataan khusus atau tertentu juga dapat berlaku benar. Induksi matematika merupakan perluasan dari logika matematika. Yang dalam penerapannya, logika matematika juga digunakan untuk mempelajari pernyataan yang bernilai benar atau salah.

Prinsip Induksi Matematika

Misalkan P(n) adalah pernyataan yang memuat bilangan asli, maka P(n) dapat dibuktikan benar untuk semua bilangan asli n, dengan mengikuti langkah-langkah induksi matematika.

Berikut ini merupakan langkah-langkah dalam pembuktiannya.

  1. Langkah awal : P(1) adalah pernyataan benar, berarti untuk n = 1, maka P(n) adalah bernilai benar.
  2. Langkah induksi : Apabila P(k) benar, maka P(k + 1) benar untuk setiap k adalah bilangan asli.

Apabila langkah (1) dan (2) benar, maka dapat disimpulkan bahwa P(n) benar untuk setiap n adalah bilangan asli.

Pembuktian Induksi Matematika pada Deret Bilangan

Pada deret bilangan, biasanya persoalan induksi matematika dalam bentuk penjumlahan yang beruntun. Sehingga, harus dibuktikan kebenarannya pada suku pertama, suku ke-k dan suku ke-(k + 1).

Contoh soal deret bilangan

  1. Buktikan 1 + 3 + 5 + … + (2n – 1)  = n² bernilai benar untuk setiap n bilangan asli.

Pembahasan : 

P(n) = 1 + 3 + 5 + … + (2n-1) = n²

Langkah awal :

Misalkan n = 1, maka

P₁ : 1 = 1²

Jadi, P₁ benar.

Langkah induksi :

Misal P(k) = 1 + 3 + 5 + … + (2k-1) = k²

Asumsikan bahwa pernyataan tersebut bernilai benar, maka P(k+1) juga benar, yaitu

P(k+1) = 1 + 3 + 5 + … + (2k-1) + (2k+1) = (k+1)²

Hasil asumsi :

1 + 3 + 5 + … + (2k-1) = k²

Tambahkan kedua ruas dengan U(k+1)

1 + 3 + 5 + … + (2k-1) + (2k+1) = k² + (2k+1)

1 + 3 + 5 + … + (2k-1) + (2k+1) = k² + 2k + 1

1 + 3 + 5 + … + (2k-1) + (2k+1) = (k+1)² 

Maka, P(k+1) benar.

Pembuktian Induksi Matematika pada Keterbagian

Jenis ini biasa kita temukan pada soal yang mengandung kalimat sebagai berikut :

  1. a habis dibagi b
  2. b membagi a
  3. b faktor dari a
  4. a kelipatan b

Ciri tersebut menunjukan bahwa pernyataan tersebut dapat diselesaikan menggunakan induksi matematika jenis pembagian.

Hal yang perlu diingat adalah, apabila a habis dibagi b maka a = b.m, dimana m merupakan bilangan bulat.

Contoh soal keterbagian

  1. Buktikan jika n³ + 2n habis dibagi 3, untuk setiap n bilangan asli.

Pembahasan :

P(n) = n³ + 2n dapat habis dbagi 3

Langkah awal :

Misal n = 1, maka

P₁ : 1³ + 2.1 = 3

Jadi, P₁ benar.

Langkah induksi :

Misal  P(k) = k³ + 2k habis dibagi 3

Asumsikan bahwa pernyataan tersebut benar , maka P(k+1) juga benar, yaitu 

(k + 1)³ + 2(k + 1) habis dibagi 3

Hasil asumsi :

Karena pada langkah sebelumnya sudah diketahui bahwa k³ + 2k habis dibagi 3 dan 3(k2 + k + 1) juga habis dibagi 3, maka (k3 + 2k) + 3(k2 + k + 1) pasti habis dibagi 3.

Jadi, benar.

Pembuktian Induksi Matematika pada Ketidaksamaan

Jenis ketidaksamaan ini ditandai dengan tanda lebih dari atau kurang dari dalam pernyataannya. Sifat-sifat yang sering digunakan untuk pernyataan jenis pertidaksamaan adalah sebagai berikut :

  1. a < b < c ⇒ a < c atau a > b > c ⇒ a > c
  2. a > b  ⇒ a + c > b + c atau a < b  ⇒ a + c < b + c

Contoh soal ketidaksamaan

  1. Buktikanlah untuk setiap bilangan asli n ≥ 2 berlaku 3n > 1 + 2n

Pembahasan :

P(n) = 3n > 1 + 2n

Langkah awal :

Misal n = 2, maka

P₁ : 32 = 9 > 1 + 2.2 = 5

Jadi, P₁ benar.

Langkah induksi :

Misal P(k) = 3k > 1 + 2k,    k ≥ 2

Asumsikan bahwa pernyataan tersebut benar, maka P(k + 1) juga benar, yaitu

3k+1 > 1 + 2(k + 1)

Jadi, n=(k + 1) benar.

Rumus Induksi Matematika

Dapat disimpulkan dari penjelasan sebelumnya bahwa langkah untuk pembuktian induksi matematika dapat dilakukan dengan cara seperti berikut :

  1. Langkah awal : Menunjukan bahwa P(1) adalah benar.
  2. Langkah induksi : Mengasumsikan bahwa P(k) adalah benar untuk k bilangan asli, lalu menunjukan P(k + 1) juga benar berdasarkan asumsi tersebut.
  3. Kesimpulan : P(n) adalah benar untuk masing-masing bilangan asli n.

Jenis Induksi Matematika

  1. Deret Bilangan

Sebagai ilustrasi dibuktikan secara induksi matematika bahwa 1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n + 1).

  • Langkah 1

untuk n = 1, maka :

1 = \frac{1}{2}n(n + 1)

1 = \frac{1}{2}(1)(1 + 1)

1 = 1

Bentuk untuk n = 1 rumus tersebut benar.

  • Langkah 2

Misal rumus benar untuk n = k, maka:

1 + 2 + 3 + \cdots + k = \frac{1}{2}k(k + 1)

  • Langkah 3

Akan dibuktikan bahwa rumus benar untuk n = k + 1. Sehingga:

1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} (k + 1)((k + 1) + 1)

Pembuktiannya:

1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} k(k + 1) + (k + 1) (dalam langkah 2, kedua ruas

ditambah k + 1)

= \frac{1}{2}k (k + 1) +\frac{1}{2} [2(k + 1)]. (k + 1) dimodifikasi menyerupai \frac{1}{2} k (k + 1))

= \frac{1}{2}[k(k + 1) + 2(k + 1)]            (penyederhanaan)

= \frac{1}{2}(k^2 + k + 2k + 2)

= \frac{1}{2}(k^2 + 3k + 2)

1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} (k + 1)(k + 2)                    (terbukti)


  1. Bilangan bulat hasil pembagian

Suatu bilangan dikatakan habis dibagi jika hasil pembagian tersebut adalah bilangan bulat. Sebagai ilustrasi, dibuktikan secara induksi matematika bahwa 5^{2n} + 3n - 1 habis dibagi 9.

  • Langkah 1

untuk n = 1, maka:

5^{2n} + 3n - 1 = 5^{2(1)} + 3(1) - 1

=5^2 + 3 - 1

= 27

27 habis dibagi 9, maka n = 1 benar.

  • Langkah 2

Misal rumus benar untuk n = k, maka :

5^{2n} + 3n -1 \overset {menjadi}{\rightarrow} 5^{2k} + 3k - 1                  (habis dibagi 9)

5^{2k} + 3k - 1 =9b     (b merupakah hasil bagi 5^{2k} + 3k - 1 oleh 9)

  • Langkah 3

Akan dibuktikan bahwa rumus benar untuk n = k + 1. Pembuktian:

5^{2(k + 1)} + 3(k + 1) - 1

= 5^{2k + 2} + 3k + 3 - 1

= 5^2 (5^2k) + 3k + 3 -1

kemudian (5^{2k}) dimodifikasi dengan memasukan 5^{2k} + 3k - 1.

= 25 (5^{2k} + 3k - 1) - 75k + 25 + 3k + 3 -1

= 25(5^{2k} + 3k -1) - 72k + 27

= 25 (9b) - 72k + 27

= 9 (25b - 8k + 3) … akan habis dibagi oleh 9 (terbukti)

Contoh Soal Induksi Matematika dan Pembahasan

Contoh Soal 1

Buktikan bahwa 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{1}{4} n^2 (n + 1)^2.

Pembahasan:

  • Langkah 1

1^3 = \frac{1}{4}(1)^2(1 + 1)^2 = \frac{2^2}{4}

1 = 1    (terbukti)

  • Langkah 2 (n = k)

1^3 + 2^3 + 3^3 + \cdots + k^3 = \frac{1}{4}k^2(k + 1)^2

  • Langkah 3 (n = k + 1)

1^3 + 2^3 + 3^3 + \cdots + k^3(k + 1)^3 = \frac{1}{4}(k + 1)^2 (k + 2)^3.

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1 )^3 + (k + 1)^3 = \frac{1}{4}k^2(k + 1)^2 + (k + 1)^3   (kedua ruas ditambah (k + 1)^3.

 1^3 + 2^3 + 3^3 + \cdots + (k + 1)^3= (k + 1)^2 (\frac{1}{4}k^2 + (k + 1))

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k +1)^3 = (k + 1)

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2 (k^2 + 4k + 4)

 1^3 + 2^3 +3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2(k + 2)(k + 2)

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2(k + 2)^2     {terbukti).

Contoh Soal 2

Buktikan bahwa

\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{n}{2^n} = 2 - \frac{n + 2}{2^n}

Pembahasan:

  • Langkah 1

 \frac{1}{2} = 2 - \frac{(1)+2}{2^1} = 2 - \frac{3}{2}

\frac{1}{2} = \frac{1}{2}      (terbukti)

  • Langkah 2 (n = k)

\frac{1}{2} + \frac{2}{2^2} + \cdots + \frac{2}{2^k} = 2 - \frac{k + 2}{2^k}

  • Langkah 3 (n = k + 1)

\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{k}{2^k} + \frac{k + 1}{2^{k + 1}} = 2 - \frac{k + 3}{2 ^{k +1}}

Dibuktikan dengan:

 = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{k}{2^k} + \frac{k + 1}{2^{k + 1}} = 2 - \frac{k + 2}{2^k} + \frac{k + 1}{2^{k + 1}}     (kedua ruas dikali \frac{k+1}{2^{k+1}})

 = 2 - \frac{2(k + 2)}{2^{(k + 1)}} + \frac{k + 1}{2^{k +1}}      (2k dimodifikasi menjadi 2k+1)

= 2 -\frac{2k + 4}{2^{(k + 1)}} + \frac{k + 1}{2^{k + 1}}

= 2 + \frac{k + 1 - (2k + 4))}{2^{(k + 1)}}

= 2 - \frac{k + 3}{2^{(k + 1)}}       (terbukti)

Contoh Soal 3

Buktikan bahwa 3^{2n} + 2{2n + 2} habis dibagi 5.

Pembahasan:

  • Langkah 1

3^{2(1)} + 2^{2(1)+2} = 3^2 + 2^4 = 9 + 16 = 25    habis dibagi 5 (terbukti)

  • Langkah 2 (n = k)

3^{2k} + 2^{2k+2}

  • Langkah 3 (n = k + 1)

3^{2(k+1)} + 2^{2(k+1)+2}

= 3^{2k+2} + 2^{2k+2+2}

= 3^2(3^{2k}) + 2^2(2^{2k+2})      (dalam kurung dibuat sama

dengan bentuk soal)

=10(3^{2k}) + 5(2^{2k+2}) - 3^{2k} - 2^{2k+2}       (3^2 dibuat 10 dan 2^2 dibuat 5, agar bisa dibagi 5)

= 10(3^{2k}) + 5(2^{2k+2}) - (3^{2k} + 2^{2k+2})

Didapatkan :

  • 10(3^{2k}) habis dibagi 5
  • 5(2^{2k+2})habis dibagi 5
  • -(3^{2k}) + 2^{2k+2}sama dengan langkah 2, habis dibagi 5

untuk Lebih jelasnya silakan lihat video berikut :