Kamis, 22 Juli 2021

Induksi Matematika

Induksi Matematika

Induksi matematika merupakan materi yang menjadi perluasan dari logika matematika. Logika matematika sendiri mempelajari pernyataan yang bisa bernilai benar atau salah, ekivalen atau ingkaran sebuah pernyataan, dan juga berisi penarikan kesimpulan.

Induksi matematika menjadi sebuah metode pembuktian secara deduktif yang digunakan untuk membuktikan suatu pernyataan benar atau salah. Dimana merupakan suatu proses atau aktivitas berpikir untuk menarik kesimpulan berdasarkan pada kebenaran pernyataan yang berlaku secara umum sehingga pada pernyataan khusus atau tertentu juga bisa berlaku benar. Dalam induksi matematika ini, variabel dari suatu perumusan dibuktikan sebagai anggota dari himpunan bilangan asli.


Pengertian Induksi Matematika

Induksi Matematika merupakan salah satu metode untuk membuktikan suatu pernyataan benar atau salah secara deduktif. Dimana merupakan suatu proses untuk menarik suatu kesimpulan berdasar pada kebenaran pernyataan yang berlaku secara umum sehingga untuk pernyataan khusus atau tertentu juga dapat berlaku benar. Induksi matematika merupakan perluasan dari logika matematika. Yang dalam penerapannya, logika matematika juga digunakan untuk mempelajari pernyataan yang bernilai benar atau salah.

Prinsip Induksi Matematika

Misalkan P(n) adalah pernyataan yang memuat bilangan asli, maka P(n) dapat dibuktikan benar untuk semua bilangan asli n, dengan mengikuti langkah-langkah induksi matematika.

Berikut ini merupakan langkah-langkah dalam pembuktiannya.

  1. Langkah awal : P(1) adalah pernyataan benar, berarti untuk n = 1, maka P(n) adalah bernilai benar.
  2. Langkah induksi : Apabila P(k) benar, maka P(k + 1) benar untuk setiap k adalah bilangan asli.

Apabila langkah (1) dan (2) benar, maka dapat disimpulkan bahwa P(n) benar untuk setiap n adalah bilangan asli.

Pembuktian Induksi Matematika pada Deret Bilangan

Pada deret bilangan, biasanya persoalan induksi matematika dalam bentuk penjumlahan yang beruntun. Sehingga, harus dibuktikan kebenarannya pada suku pertama, suku ke-k dan suku ke-(k + 1).

Contoh soal deret bilangan

  1. Buktikan 1 + 3 + 5 + … + (2n – 1)  = n² bernilai benar untuk setiap n bilangan asli.

Pembahasan : 

P(n) = 1 + 3 + 5 + … + (2n-1) = n²

Langkah awal :

Misalkan n = 1, maka

P₁ : 1 = 1²

Jadi, P₁ benar.

Langkah induksi :

Misal P(k) = 1 + 3 + 5 + … + (2k-1) = k²

Asumsikan bahwa pernyataan tersebut bernilai benar, maka P(k+1) juga benar, yaitu

P(k+1) = 1 + 3 + 5 + … + (2k-1) + (2k+1) = (k+1)²

Hasil asumsi :

1 + 3 + 5 + … + (2k-1) = k²

Tambahkan kedua ruas dengan U(k+1)

1 + 3 + 5 + … + (2k-1) + (2k+1) = k² + (2k+1)

1 + 3 + 5 + … + (2k-1) + (2k+1) = k² + 2k + 1

1 + 3 + 5 + … + (2k-1) + (2k+1) = (k+1)² 

Maka, P(k+1) benar.

Pembuktian Induksi Matematika pada Keterbagian

Jenis ini biasa kita temukan pada soal yang mengandung kalimat sebagai berikut :

  1. a habis dibagi b
  2. b membagi a
  3. b faktor dari a
  4. a kelipatan b

Ciri tersebut menunjukan bahwa pernyataan tersebut dapat diselesaikan menggunakan induksi matematika jenis pembagian.

Hal yang perlu diingat adalah, apabila a habis dibagi b maka a = b.m, dimana m merupakan bilangan bulat.

Contoh soal keterbagian

  1. Buktikan jika n³ + 2n habis dibagi 3, untuk setiap n bilangan asli.

Pembahasan :

P(n) = n³ + 2n dapat habis dbagi 3

Langkah awal :

Misal n = 1, maka

P₁ : 1³ + 2.1 = 3

Jadi, P₁ benar.

Langkah induksi :

Misal  P(k) = k³ + 2k habis dibagi 3

Asumsikan bahwa pernyataan tersebut benar , maka P(k+1) juga benar, yaitu 

(k + 1)³ + 2(k + 1) habis dibagi 3

Hasil asumsi :

Karena pada langkah sebelumnya sudah diketahui bahwa k³ + 2k habis dibagi 3 dan 3(k2 + k + 1) juga habis dibagi 3, maka (k3 + 2k) + 3(k2 + k + 1) pasti habis dibagi 3.

Jadi, benar.

Pembuktian Induksi Matematika pada Ketidaksamaan

Jenis ketidaksamaan ini ditandai dengan tanda lebih dari atau kurang dari dalam pernyataannya. Sifat-sifat yang sering digunakan untuk pernyataan jenis pertidaksamaan adalah sebagai berikut :

  1. a < b < c ⇒ a < c atau a > b > c ⇒ a > c
  2. a > b  ⇒ a + c > b + c atau a < b  ⇒ a + c < b + c

Contoh soal ketidaksamaan

  1. Buktikanlah untuk setiap bilangan asli n ≥ 2 berlaku 3n > 1 + 2n

Pembahasan :

P(n) = 3n > 1 + 2n

Langkah awal :

Misal n = 2, maka

P₁ : 32 = 9 > 1 + 2.2 = 5

Jadi, P₁ benar.

Langkah induksi :

Misal P(k) = 3k > 1 + 2k,    k ≥ 2

Asumsikan bahwa pernyataan tersebut benar, maka P(k + 1) juga benar, yaitu

3k+1 > 1 + 2(k + 1)

Jadi, n=(k + 1) benar.

Rumus Induksi Matematika

Dapat disimpulkan dari penjelasan sebelumnya bahwa langkah untuk pembuktian induksi matematika dapat dilakukan dengan cara seperti berikut :

  1. Langkah awal : Menunjukan bahwa P(1) adalah benar.
  2. Langkah induksi : Mengasumsikan bahwa P(k) adalah benar untuk k bilangan asli, lalu menunjukan P(k + 1) juga benar berdasarkan asumsi tersebut.
  3. Kesimpulan : P(n) adalah benar untuk masing-masing bilangan asli n.

Jenis Induksi Matematika

  1. Deret Bilangan

Sebagai ilustrasi dibuktikan secara induksi matematika bahwa 1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n + 1).

  • Langkah 1

untuk n = 1, maka :

1 = \frac{1}{2}n(n + 1)

1 = \frac{1}{2}(1)(1 + 1)

1 = 1

Bentuk untuk n = 1 rumus tersebut benar.

  • Langkah 2

Misal rumus benar untuk n = k, maka:

1 + 2 + 3 + \cdots + k = \frac{1}{2}k(k + 1)

  • Langkah 3

Akan dibuktikan bahwa rumus benar untuk n = k + 1. Sehingga:

1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} (k + 1)((k + 1) + 1)

Pembuktiannya:

1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} k(k + 1) + (k + 1) (dalam langkah 2, kedua ruas

ditambah k + 1)

= \frac{1}{2}k (k + 1) +\frac{1}{2} [2(k + 1)]. (k + 1) dimodifikasi menyerupai \frac{1}{2} k (k + 1))

= \frac{1}{2}[k(k + 1) + 2(k + 1)]            (penyederhanaan)

= \frac{1}{2}(k^2 + k + 2k + 2)

= \frac{1}{2}(k^2 + 3k + 2)

1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} (k + 1)(k + 2)                    (terbukti)


  1. Bilangan bulat hasil pembagian

Suatu bilangan dikatakan habis dibagi jika hasil pembagian tersebut adalah bilangan bulat. Sebagai ilustrasi, dibuktikan secara induksi matematika bahwa 5^{2n} + 3n - 1 habis dibagi 9.

  • Langkah 1

untuk n = 1, maka:

5^{2n} + 3n - 1 = 5^{2(1)} + 3(1) - 1

=5^2 + 3 - 1

= 27

27 habis dibagi 9, maka n = 1 benar.

  • Langkah 2

Misal rumus benar untuk n = k, maka :

5^{2n} + 3n -1 \overset {menjadi}{\rightarrow} 5^{2k} + 3k - 1                  (habis dibagi 9)

5^{2k} + 3k - 1 =9b     (b merupakah hasil bagi 5^{2k} + 3k - 1 oleh 9)

  • Langkah 3

Akan dibuktikan bahwa rumus benar untuk n = k + 1. Pembuktian:

5^{2(k + 1)} + 3(k + 1) - 1

= 5^{2k + 2} + 3k + 3 - 1

= 5^2 (5^2k) + 3k + 3 -1

kemudian (5^{2k}) dimodifikasi dengan memasukan 5^{2k} + 3k - 1.

= 25 (5^{2k} + 3k - 1) - 75k + 25 + 3k + 3 -1

= 25(5^{2k} + 3k -1) - 72k + 27

= 25 (9b) - 72k + 27

= 9 (25b - 8k + 3) … akan habis dibagi oleh 9 (terbukti)

Contoh Soal Induksi Matematika dan Pembahasan

Contoh Soal 1

Buktikan bahwa 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{1}{4} n^2 (n + 1)^2.

Pembahasan:

  • Langkah 1

1^3 = \frac{1}{4}(1)^2(1 + 1)^2 = \frac{2^2}{4}

1 = 1    (terbukti)

  • Langkah 2 (n = k)

1^3 + 2^3 + 3^3 + \cdots + k^3 = \frac{1}{4}k^2(k + 1)^2

  • Langkah 3 (n = k + 1)

1^3 + 2^3 + 3^3 + \cdots + k^3(k + 1)^3 = \frac{1}{4}(k + 1)^2 (k + 2)^3.

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1 )^3 + (k + 1)^3 = \frac{1}{4}k^2(k + 1)^2 + (k + 1)^3   (kedua ruas ditambah (k + 1)^3.

 1^3 + 2^3 + 3^3 + \cdots + (k + 1)^3= (k + 1)^2 (\frac{1}{4}k^2 + (k + 1))

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k +1)^3 = (k + 1)

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2 (k^2 + 4k + 4)

 1^3 + 2^3 +3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2(k + 2)(k + 2)

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2(k + 2)^2     {terbukti).

Contoh Soal 2

Buktikan bahwa

\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{n}{2^n} = 2 - \frac{n + 2}{2^n}

Pembahasan:

  • Langkah 1

 \frac{1}{2} = 2 - \frac{(1)+2}{2^1} = 2 - \frac{3}{2}

\frac{1}{2} = \frac{1}{2}      (terbukti)

  • Langkah 2 (n = k)

\frac{1}{2} + \frac{2}{2^2} + \cdots + \frac{2}{2^k} = 2 - \frac{k + 2}{2^k}

  • Langkah 3 (n = k + 1)

\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{k}{2^k} + \frac{k + 1}{2^{k + 1}} = 2 - \frac{k + 3}{2 ^{k +1}}

Dibuktikan dengan:

 = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{k}{2^k} + \frac{k + 1}{2^{k + 1}} = 2 - \frac{k + 2}{2^k} + \frac{k + 1}{2^{k + 1}}     (kedua ruas dikali \frac{k+1}{2^{k+1}})

 = 2 - \frac{2(k + 2)}{2^{(k + 1)}} + \frac{k + 1}{2^{k +1}}      (2k dimodifikasi menjadi 2k+1)

= 2 -\frac{2k + 4}{2^{(k + 1)}} + \frac{k + 1}{2^{k + 1}}

= 2 + \frac{k + 1 - (2k + 4))}{2^{(k + 1)}}

= 2 - \frac{k + 3}{2^{(k + 1)}}       (terbukti)

Contoh Soal 3

Buktikan bahwa 3^{2n} + 2{2n + 2} habis dibagi 5.

Pembahasan:

  • Langkah 1

3^{2(1)} + 2^{2(1)+2} = 3^2 + 2^4 = 9 + 16 = 25    habis dibagi 5 (terbukti)

  • Langkah 2 (n = k)

3^{2k} + 2^{2k+2}

  • Langkah 3 (n = k + 1)

3^{2(k+1)} + 2^{2(k+1)+2}

= 3^{2k+2} + 2^{2k+2+2}

= 3^2(3^{2k}) + 2^2(2^{2k+2})      (dalam kurung dibuat sama

dengan bentuk soal)

=10(3^{2k}) + 5(2^{2k+2}) - 3^{2k} - 2^{2k+2}       (3^2 dibuat 10 dan 2^2 dibuat 5, agar bisa dibagi 5)

= 10(3^{2k}) + 5(2^{2k+2}) - (3^{2k} + 2^{2k+2})

Didapatkan :

  • 10(3^{2k}) habis dibagi 5
  • 5(2^{2k+2})habis dibagi 5
  • -(3^{2k}) + 2^{2k+2}sama dengan langkah 2, habis dibagi 5

untuk Lebih jelasnya silakan lihat video berikut :




 

Persamaan Nilai Mutlak

Nilai Mutlak

Kira-kira di antara kalian sudah pada tahu belum ya apa itu nilai mutlak? Nilai mutlak suatu bilangan merupakan jarak antara bilangan tersebut dengan nol pada garis bilangan real.

Nilai mutlak ditulis seperti ini: |𝓧| (anggap 𝓧 merupakan suatu bilangan)

Terdapat dua jenis nilai ini, yaitu Persamaan Nilai Mutlak dan Pertidaksamaan Nilai Mutlak.

Masih sedikit bingung? Coba lihat ilustrasi berikut.

Saat Lina bermain lompat tali, dari posisi diam, ia melompat sebanyak 2 langkah ke depan, 3 langkah ke belakang, lalu 2 langkah ke depan lagi, diikut 1 langkah ke belakang, dan 1 langkah tambahan ke belakang. Lompatan Lina ini merupakan nilai jenis mutlak dan tidak ditentukan arah. 

Lalu nilai mutlaknya berapa, ya? Perlu diingat, nilai jenis mutlak tidak dipengaruhi oleh banyaknya arah, melainkan dipengaruhi oleh banyak lompatan/pindahan. Jadi, untuk mencari tahu berapa nilai mutlaknya suatu bilangan, hanya perlu menghitung lompatan atau pindahannya saja.

Contoh mencari nilai mutlak pada ilustrasi Lina:

Ilustrasi Lina apabila digambar dalam garis sumbu akan terlihat seperti ini.

Angka merupakan posisi diam Lina, atau dapat ditulis dengan:

sumbu nilai mutlak
sumbu nilai mutlakFoto oleh Studio Literasi

𝓧 = 0

  • Panah merah menunjukan lompatan pertama sejauh 2 langkah ke depan atau mengarah ke sumbu 𝓧 positif, dapat ditulis dengan:

+2

  • Panah ungu menunjukan lompatan kedua sejauh 3 langkah ke belakang atau mengarah ke sumbu 𝓧 negatif, dapat ditulis dengan:

-3

  • Panah biru menunjukan lompatan ketiga sejauh 2 langkah ke depan atau menuju sumbu 𝓧 positif, dapat ditulis dengan:

+2

  • Dan seterusnya sampai pada panah kuning yang menunjukan berhentinya lompatan Lina.

Maka nilai mutlaknya:

|2| + |-3| + |2| + |-1| + |-1| = 9, jawabannya adalah 9. Mengapa bisa 9?

Hayoo, diingat lagi yah jika nilai jenis mutlak tidak menghitung arah tetapi banyak lompatan/perpindahan.

Tanda (-) pada -3 dan -1 menunjukan arah lompatan ke belakang, jadi dapat dihiraukan. Seperti ini:

|2| + |-3| + |2| + |-1| + |-1| = 2 + 3 + 2 + 1 + 1 = 9, mudah bukan?

Dari sini dapat dituliskan konsep nilai jenis mutlak.

Konsep nilai mutlak

Konsep tersebut dapat didefinisikan dengan bahasa yang lebih mudah, yaitu nilai mutlak suatu bilangan positif atau nol adalah bilangan itu sendiri, sedangkan nilai mutlak dari bilangan negatif adalah lawan dari bilangan negatif itu.

Contoh soal nilai mutlak

  1. Berapa nilai mutlaknya dari 6?

Jawaban: |6| = ……?

Karena 6 adalah bilangan positif, maka nilai mutlaknya adalah bilangan itu sendiri, yang lain tidak bukan adalah 6.

Maka , |6| = 6

  1. Berapa nilai mutlaknya dari -9?

Jawaban: |-9| = ……?

Karena -9 merupakan bilangan negatif, maka nilai mutlaknya adalah lawan dari bilangan itu sendiri. Lawan dari -9 adalah 9.

Apabila menggunakan konsep di atas, maka:

|𝓧| = -𝓧

|-9| = – (-9)

|-9| = 9

Sampai sini Studio Literasi yakin kalian pasti sudah paham mengenai konsep dari nilai jenis mutlak. Sekarang saatnya belajar persamaan dan pertidaksamaan nilai mutlak. Tapi…kita lanjut ke bagian Persamaan Nilai Mutlak Linear Satu Variabel terlebih dahulu, ya..

Persamaan Nilai Mutlak Linear Satu Variabel

Kemarin Luna memberi tahu Ayu bahwa jarak rumah Luna 6 km dari rumah Ayu. Luna juga bilang kalau rumah Luna dekat dengan Taman Safari hanya berjarak 2 km. Lalu, Ayu penasaran dimana ya sebenarnya Taman Safari dan berapa jaraknya jika dari rumah Ayu?

Dapat dilihat pada gambar, bahwa ada dua kemungkinan bahwa Taman Safari berada di sebelah kanan atau kiri rumah Luna. Tetapi jarak Taman Safari dengan rumah Ayu masih belum diketahui. Maka masalah ini dapat dipecahkan menggunakan persamaan nilai mutlak linear satu variabel.

Persamaan nilai Mutlak Linear Satu Variabel, Foto oleh Studioliterasi

Contoh soal untuk persamaan nilai mutlak linear satu variabel:

Gambar diatas apabila diletakan pada garis sumbu akan terlihat seperti ini.

Nilai Mutlak Linear satu variabel, Foto oleh Studioliterasi
  • Jarak rumah Ayu dengan Taman Safari ditulis dengan 𝓧 karena masih belum diketahui nilainya.
  • Kemungkinan pertama, Taman Safari berada di sebelah kiri atau menuju ke arah sumbu negatif.
  • Kemungkinan kedua, Taman Safari berada di sebelah kanan atau menuju ke arah sumbu positif. 

Kemungkinan pertama:

|𝓧 – jarak rumah Ayu dengan rumah Luna| = jarak Taman Safari dengan rumah Luna

|𝓧 – 6| = 2

        – (𝓧 – 6) = 2 

          -𝓧 + 6  = 2

    -𝓧   = 2 – 6

    -𝓧   = -4

    𝓧   = 4

Kemungkinan kedua:

|𝓧 – jarak rumah Ayu dengan rumah Luna| = jarak Taman Safari dengan rumah Luna

|𝓧 – 6| = 2

          (𝓧 – 6) = 2 

            𝓧 – 6  = 2

    𝓧   = 2 + 6

    𝓧   = 8

Jadi, jawabannya adalah 𝓧 = 4 km atau 𝓧 = 8 km.

Nah begitu kira-kira untuk persamaan nilai mutlak linear satu variabel, sekarang kita lanjut ke pertidaksamaan nilai mutlak linear satu variabel, yuk!
























Untuk lebih jelasnya silakan lihat video berikut :